Promoting Sustainable Coal Gas Development: Microscopic Seepage Mechanism of Natural Fractured Coal Based on 3D-CT Reconstruction

Author:

Zhang Chunwang12,Jin Zhixin12,Feng Guorui3,Zhang Lei2,Gao Rui3,Li Chun3

Affiliation:

1. Center of Shanxi Engineering Research for Coal Mine Intelligent Equipment, Taiyuan University of Technology, Taiyuan 030024, China

2. College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China

3. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Green mining is an effective way to achieve sustainable development in the coal industry. Preventing coal and gas outburst dynamic disasters are essential for ensuring sustainable and safe mining. The numerous microscopic pores within the coal serve as the primary storage space for gas, making it critical to explore the structural distribution and seepage characteristics to reveal the disaster mechanism. Under mining stress, gas within the micropores of the coal migrates outward through cracks, with these cracks exerting a significant control effect on gas migration. Therefore, this study focuses on utilizing natural fractured coal bodies as research objects, employing a micro-CT imaging system to conduct scanning tests and digital core technology to reconstruct sample pore and fracture structures in three dimensions, and characterizing the pores, cracks, skeleton structure, and connectivity. A representative elementary volume (REV) containing macro cracks was selected to establish an equivalent model of the pore network, and a seepage simulation analysis was performed using the visualization software. Revealing the seepage characteristics of fractured coal mass from a microscopic perspective. The research results can provide guidance for gas drainage and dynamic disaster early warning in deep coal mines, thus facilitating the sustainable development of coal mining enterprises.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3