Study Roadmap Selection Based on the Thermal Comfort of Street Trees in Summer: A Case Study from a University Campus in China

Author:

Zheng Guorui1,Xu Han2,Liu Fan1ORCID,Lin Xinya3ORCID,Wang Suntian1,Dong Jianwen1

Affiliation:

1. College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, 15 Shangxiadian Rd, Fuzhou 350002, China

2. College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China

3. Longyan Agricultural School, Longyan 364000, China

Abstract

The intensification of the urban heat island effect, characterized by persistent high temperatures in Chinese cities during summer, has led to notable shifts in urban residents’ activity patterns and travel preferences. Given that street trees, as fundamental components of urban road networks, have significant interaction with residents, it is imperative to investigate their thermal comfort impact. This study aims to enhance the comfortable summer travel experience for urban dwellers. Fujian Agriculture and Forestry University (FAFU) was selected as the case study site, with eight street tree species identified as measurement points. The summer solstice (21 June 2023) served as the representative weather condition. Through monitoring temperature and humidity, the study explored the correlation between street tree species, their characteristic factors, and thermal comfort. Utilizing ENVI-met and ArcGIS, the thermal comfort of campus travel routes was assessed, leading to the development of a summer travel guide based on thermal comfort considerations. The research novelty lies in applying a combined ENVI-met 5.0.2 and ArcGIS 10.8 software approach for modelling and visualizing the microclimate, which enables a more precise analysis of the thermal comfort variations of different campus paths, thus improving the accuracy and applicability of the results in urban planning. The findings reveal several points. (1) Different street trees possess varying capacities to enhance human comfort, with Falcataria falcata and Mangifera indica exhibiting the strongest cooling and humidifying effects, whereas Bauhinia purpurea and Amygdalus persica perform the poorest. Additionally, the research confirms ENVI-met’s scientific accuracy and practicality for microclimate studies. (2) The contribution of street trees to the comfort of campus road travel is primarily determined by the Sky View Factor (SVF), which negatively correlates with cooling and humidifying intensity and positively with thermal comfort. (3) During midday, travel comfort conditions on campus roads are better. Based on the thermal comfort assessment, a summer roadmap was created for the campus. In this case, the campus roads indicated by road A are considered the best travel routes in summer, and the roads indicated by roads B and C are considered alternatives for travelling. This practical application demonstrates how theoretical research results can be translated into practical tools for daily commuting and urban planning. It provides data references and empirical cases for the scientific optimization and enhancement of urban roads.

Funder

Fujian Provincial Department of Finance—Min Cai Finger

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3