Predicting Plant Growth from Time-Series Data Using Deep Learning

Author:

Yasrab RobailORCID,Zhang Jincheng,Smyth Polina,Pound Michael P.

Abstract

Phenotyping involves the quantitative assessment of the anatomical, biochemical, and physiological plant traits. Natural plant growth cycles can be extremely slow, hindering the experimental processes of phenotyping. Deep learning offers a great deal of support for automating and addressing key plant phenotyping research issues. Machine learning-based high-throughput phenotyping is a potential solution to the phenotyping bottleneck, promising to accelerate the experimental cycles within phenomic research. This research presents a study of deep networks’ potential to predict plants’ expected growth, by generating segmentation masks of root and shoot systems into the future. We adapt an existing generative adversarial predictive network into this new domain. The results show an efficient plant leaf and root segmentation network that provides predictive segmentation of what a leaf and root system will look like at a future time, based on time-series data of plant growth. We present benchmark results on two public datasets of Arabidopsis (A. thaliana) and Brassica rapa (Komatsuna) plants. The experimental results show strong performance, and the capability of proposed methods to match expert annotation. The proposed method is highly adaptable, trainable (transfer learning/domain adaptation) on different plant species and mutations.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3