Stacked Autoencoders Driven by Semi-Supervised Learning for Building Extraction from near Infrared Remote Sensing Imagery

Author:

Protopapadakis EftychiosORCID,Doulamis Anastasios,Doulamis NikolaosORCID,Maltezos Evangelos

Abstract

In this paper, we propose a Stack Auto-encoder (SAE)-Driven and Semi-Supervised (SSL)-Based Deep Neural Network (DNN) to extract buildings from relatively low-cost satellite near infrared images. The novelty of our scheme is that we employ only an extremely small portion of labeled data for training the deep model which constitutes less than 0.08% of the total data. This way, we significantly reduce the manual effort needed to complete an annotation process, and thus the time required for creating a reliable labeled dataset. On the contrary, we apply novel semi-supervised techniques to estimate soft labels (targets) of the vast amount of existing unlabeled data and then we utilize these soft estimates to improve model training. Overall, four SSL schemes are employed, the Anchor Graph, the Safe Semi-Supervised Regression (SAFER), the Squared-loss Mutual Information Regularization (SMIR), and an equal importance Weighted Average of them (WeiAve). To retain only the most meaning information of the input data, labeled and unlabeled ones, we also employ a Stack Autoencoder (SAE) trained under an unsupervised manner. This way, we handle noise in the input signals, attributed to dimensionality redundancy, without sacrificing meaningful information. Experimental results on the benchmarked dataset of Vaihingen city in Germany indicate that our approach outperforms all state-of-the-art methods in the field using the same type of color orthoimages, though the fact that a limited dataset is utilized (10 times less data or better, compared to other approaches), while our performance is close to the one achieved by high expensive and much more precise input information like the one derived from Light Detection and Ranging (LiDAR) sensors. In addition, the proposed approach can be easily expanded to handle any number of classes, including buildings, vegetation, and ground.

Funder

H2020 Transport

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3