Impacts of Heat and Drought on Gross Primary Productivity in China

Author:

Zhu XiufangORCID,Zhang ShizheORCID,Liu Tingting,Liu Ying

Abstract

Heat and drought stress, which often occur together, are the main environmental factors limiting the survival and growth of vegetation. Studies on the response of gross primary production (GPP) to extreme climate events such as heat and drought are highly significant for the identification of ecologically vulnerable regions, ecological risk assessments, and ecological environmental protection. We got 1982–2017 climatic data from the University of East Anglia Climatic Research Unit, Norwich, England, and GPP data from National Earth System Science Data Sharing Service Platform, Beijing, China. Using Theil–Sen median trend analysis and the Mann–Kendall test, we analyzed trends in temperature and the standardized precipitation/standardized precipitation evapotranspiration indices in the eight vegetation regions of China. Additionally, the response of GPP to the single and combined impacts of heat and drought were analyzed using multidimensional copula functions, and GPP reduction probabilities were estimated under different drought levels and heat intensities. The results showed that the probability of a drastic GPP reduction increases with increasing drought levels and heat intensities. The combined impacts of heat and drought on vegetation productivity is greater than the impacts of either drought or heat alone and presents a nonlinear superposition of the two extremes. The impact of heat on GPP is not evident when the drought level is high. The temperate grassland and warm temperate deciduous broad-leaved forest regions are the most sensitive regions to drought and heat in China. This study provides a scientific basis for the comprehensive evaluation of the risk of GPP reduction under the single and combined impacts of heat stress and drought stress.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3