Indium Tin-Oxide Wrapped 3D rGO and TiO2 Composites: Development, Characterization, and Enhancing Photocatalytic Activity for Methylene Blue

Author:

Gong Cheng,Xu Shiyin,Xiao Peng,Liu Feifan,Xu Yunhui,Yang Jin,Li Rui,Wang Xuan,Du Jun,Peng HailongORCID

Abstract

A hybrid material of indium tin-oxide (ITO) wrapped titanium dioxide and reduced graphene oxide (ITO-rGO and TiO2) was prepared using a facile hydrothermal technique. TiO2 nanorods were in situ grown on the surface of rGO (rGO and TiO2), and which was then assembled onto ITO substrate layer by layer with formation of a 3D structure. ITO-rGO and TiO2 exhibit low charge transfer resistance at the electrode-electrolyte interface and have good photoresponsive ability. Methylene blue (MB) can be effectively adsorbed and enriched onto ITO-rGO and TiO2 surface. The adsorption kinetics and thermodynamics of ITO-rGO and TiO2 were evaluated, showing that the exothermic and entropy-driven reaction were the main thermodynamic processes, and the Langmuir isotherm was the ideal model for adsorption fitting. Meanwhile, ITO greatly improved degradation of rGO and TiO2 because electrons can be collected by ITO before recombination and MB can easily enter into the 3D structure of rGO and TiO2. The highest photodegradation rate of MB reached 93.40% for ITO-rGO and TiO2 at pH 9. Additionally, ITO-rGO and TiO2 successfully solved the problems of being difficult to recycle and causing secondary pollution of traditional TiO2 catalysts. Therefore, ITO-rGO and TiO2 may be a potential photocatalyst for degrading organic pollutants in water.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3