Cofactor F420-Dependent Enzymes: An Under-Explored Resource for Asymmetric Redox Biocatalysis

Author:

Shah Mihir V.,Antoney JamesORCID,Kang Suk Woo,Warden Andrew C.ORCID,Hartley Carol J.ORCID,Nazem-Bokaee Hadi,Jackson Colin J.,Scott ColinORCID

Abstract

The asymmetric reduction of enoates, imines and ketones are among the most important reactions in biocatalysis. These reactions are routinely conducted using enzymes that use nicotinamide cofactors as reductants. The deazaflavin cofactor F420 also has electrochemical properties that make it suitable as an alternative to nicotinamide cofactors for use in asymmetric reduction reactions. However, cofactor F420-dependent enzymes remain under-explored as a resource for biocatalysis. This review considers the cofactor F420-dependent enzyme families with the greatest potential for the discovery of new biocatalysts: the flavin/deazaflavin-dependent oxidoreductases (FDORs) and the luciferase-like hydride transferases (LLHTs). The characterized F420-dependent reductions that have the potential for adaptation for biocatalysis are discussed, and the enzymes best suited for use in the reduction of oxidized cofactor F420 to allow cofactor recycling in situ are considered. Further discussed are the recent advances in the production of cofactor F420 and its functional analog FO-5′-phosphate, which remains an impediment to the adoption of this family of enzymes for industrial biocatalytic processes. Finally, the prospects for the use of this cofactor and dependent enzymes as a resource for industrial biocatalysis are discussed.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference84 articles.

1. Oxidoreductase-Catalyzed Synthesis of Chiral Amines

2. New developments in ‘ene’-reductase catalysed biological hydrogenations

3. Imine reductases, reductive aminases, and amine oxidases for the synthesis of chiral amines: Discovery, characterization, and synthetic applications;Cosgrove,2018

4. Biocatalytic asymmetric synthesis of chiral aryl alcohols;Bai;Prog. Chem.,2017

5. F420-dependent enzymes – potential for applications in biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3