Hydrolysis of Glycosyl Thioimidates by Glycoside Hydrolase Requires Remote Activation for Efficient Activity

Author:

Guillotin ,Assaf ,Pistorio ,Lafite ,Demchenko ,Daniellou

Abstract

Chemoenzymatic synthesis of glycosides relies on efficient glycosyl donor substrates able to react rapidly and efficiently, yet with increased stability towards chemical or enzymatic hydrolysis. In this context, glycosyl thioimidates have previously been used as efficient donors, in the case of hydrolysis or thioglycoligation. In both cases, the release of the thioimidoyl aglycone was remotely activated through a protonation driven by a carboxylic residue in the active site of the corresponding enzymes. A recombinant glucosidase (DtGly) from Dictyoglomus themophilum, previously used in biocatalysis, was also able to use such glycosyl thioimidates as substrates. Yet, enzymatic kinetic values analysis, coupled to mutagenesis and in silico modelling of DtGly/substrate complexes demonstrated that the release of the thioimidoyl moiety during catalysis is only driven by its leaving group ability, without the activation of a remote protonation. In the search of efficient glycosyl donors, glycosyl thioimidates are attractive and efficient. Their utility, however, is limited to enzymes able to promote leaving group release by remote activation.

Funder

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3