Author:
Senter ,Mastry ,Mannion ,McGuire ,Houtz ,Yilmaz
Abstract
A new approach for characterization of fluid catalytic cracking (FCC) catalysts is proposed. This approach is based on computational visual analyses of images originating from field emission scanning electron microscopy (FE-SEM) studies coupled with elemental mapping via electron dispersive x-ray spectroscopy (EDX) analyses. The concept of contaminant metal mobility is defined and systematically studied through quantification of interparticle transfer and intraparticle penetration of the most common FCC contaminant metals (nickel, vanadium, iron, and calcium). This novel methodology was employed for practical quantification of intraparticle mobility via the Peripheral Deposition Index (PDI). For analyzing and quantifying interparticle mobility, a new index was developed and coined “Interparticle Mobility Index” or IMI. With the development and practical application of these two indices, this study offers the first standardized methodology for quantification of metals mobility in FCC. This novel systematic approach for analyzing metals mobility allows for improved troubleshooting of refinery-specific case studies and for more effective research and development in contaminant metals passivation in FCC catalysts.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献