Abstract
The use of biodiesel and the requirement of improving its production in a more efficient and sustainable way are becoming more and more important. In this research work, castor oil was demonstrated to be an alternative feedstock for obtaining biodiesel. The production of biodiesel was optimized by the use of a two-step process. In this process, methanol and KOH (as a catalyst) were added in each step, and the glycerol produced during the first stage was removed before the second reaction. The reaction conditions were optimized, considering catalyst concentration and methanol/oil molar ratio for both steps. A mathematical model was obtained to predict the final ester content of the biodiesel. Optimal conditions (0.08 mol·L−1 and 0.01 mol·L−1 as catalyst concentration, 5.25:1 and 3:1 as methanol/oil molar ratio for first and second step, respectively) were established, taking into account the biodiesel quality and an economic analysis. This type of process allowed cost saving, since the amounts of methanol and catalyst were significantly reduced. An estimation of the final manufacturing cost of biodiesel production was carried out.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献