Formation of a Pd/MgO Structured Catalyst for the Aqueous Oxidation of Silane to Silanol

Author:

Zhou ,Cao ,Wang ,Li

Abstract

The catalytic oxidation of silanes to produce silanols using water as an oxidant at mild temperatures is a major challenge in Si-H activation. Highly efficient and easy-to-recycle catalysts based on Pd nanoparticles are in high demand. In this study, Pd nanoparticles embedded in an MgO porous overlayer on an Mg plate as a structured catalyst was prepared by the plasma electrolyte oxidation (PEO) technique. The Pd/MgO catalyst is strongly anchored to the MgO plate, building a structured catalyst. Fabrication parameters such as the temperature of the electrolyte and applied voltage significantly influenced the structure of the obtained Pd/MgO catalyst and in turn its catalytic activity. The catalytic activities of Pd/MgO were evaluated by activation of a Si-H bond for catalyzing the aqueous oxidation of silanes to silanol at mild temperatures. The catalytic activity of Pd nanoparticles is favored by their electro-deficient state due to influence from the MgO substrate. The Pd/MgO catalyst exhibits good performance stability during recycling. This work paves the way for fabricating structured catalysts with long-term stability and enhanced metal–oxide interaction.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3