Enhanced Photocatalytic Activity and Stability in Hydrogen Evolution of Mo6 Iodide Clusters Supported on Graphene Oxide

Author:

Puche Marta,García-Aboal RocíoORCID,Mikhaylov Maxim A.,Sokolov Maxim N.,Atienzar PedroORCID,Feliz MartaORCID

Abstract

Catalytic properties of the cluster compound (TBA)2[Mo6Ii8(O2CCH3)a6] (TBA = tetrabutylammonium) and a new hybrid material (TBA)2Mo6Ii8@GO (GO = graphene oxide) in water photoreduction into molecular hydrogen were investigated. New hybrid material (TBA)2Mo6Ii8@GO was prepared by coordinative immobilization of the (TBA)2[Mo6Ii8(O2CCH3)a6] onto GO sheets and characterized by spectroscopic, analytical, and morphological techniques. Liquid and, for the first time, gas phase conditions were chosen for catalytic experiments under UV–Vis irradiation. In liquid water, optimal H2 production yields were obtained after using (TBA)2[Mo6Ii8(O2CCH3)a6] and (TBA)2Mo6Ii8@GO) catalysts after 5 h of irradiation of liquid water. Despite these remarkable catalytic performances, “liquid-phase” catalytic systems have serious drawbacks: the cluster anion evolves to less active cluster species with partial hydrolytic decomposition, and the nanocomposite completely decays in the process. Vapor water photoreduction showed lower catalytic performance but offers more advantages in terms of cluster stability, even after longer radiation exposure times and recyclability of both catalysts. The turnover frequency (TOF) of (TBA)2Mo6Ii8@GO is three times higher than that of the microcrystalline (TBA)2[Mo6Ii8(O2CCH3)a6], in agreement with the better accessibility of catalytic cluster sites for water molecules in the gas phase. This bodes well for the possibility of creating {Mo6I8}4+-based materials as catalysts in hydrogen production technology from water vapor.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference82 articles.

1. Solar Hydrogen Production, Processes, Systems and Technologies;Calise,2019

2. Hydrogen Production from Solar Energy;Ture,2007

3. Sustainable Hydrogen Production;Dincer,2017

4. Noble metal-free hydrogen evolution catalysts for water splitting

5. Carbon cloth/transition metals-based hybrids with controllable architectures for electrocatalytic hydrogen evolution - A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3