Field Emission Properties of Polymer Graphite Tips Prepared by Membrane Electrochemical Etching

Author:

Knápek AlexandrORCID,Dallaev Rashid,Burda Daniel,Sobola DinaraORCID,Allaham Mohammad M.ORCID,Horáček Miroslav,Kaspar PavelORCID,Matějka Milan,Mousa Marwan S.

Abstract

This paper investigates field emission behavior from the surface of a tip that was prepared from polymer graphite nanocomposites subjected to electrochemical etching. The essence of the tip preparation is to create a membrane of etchant over an electrode metal ring. The graphite rod acts here as an anode and immerses into the membrane filled with alkali etchant. After the etching process, the tip is cleaned and analyzed by Raman spectroscopy, investigating the chemical composition of the tip. The topography information is obtained using the Scanning Electron Microscopy and by Field Emission Microscopy. The evaluation and characterization of field emission behavior is performed at ultra-high vacuum conditions using the Field Emission Microscopy where both the field electron emission pattern projected on the screen and current–voltage characteristics are recorded. The latter is an essential tool that is used both for the imaging of the tip surfaces by electrons that are emitted toward the screen, as well as a tool for measuring current–voltage characteristics that are the input to test field emission orthodoxy.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intriguing properties of graphite/polysiloxane composite-based pencil electrodes;Electrochimica Acta;2024-01

2. Electron Emission from High-Purity Copper Wires;Jordan Journal of Physics;2023-06-30

3. Explanation of the quasi-harmonic field emission behaviour observed on epoxy-coated polymer graphite cathodes;Materials Today Communications;2023-03

4. Usage of polymers as renewable energy sources;IV INTERNATIONAL SCIENTIFIC FORUM ON COMPUTER AND ENERGY SCIENCES (WFCES II 2022);2023

5. Polymer degradation under solar radiation;IV INTERNATIONAL SCIENTIFIC FORUM ON COMPUTER AND ENERGY SCIENCES (WFCES II 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3