Spectral Efficiency Improvement of 5G Massive MIMO Systems for High-Altitude Platform Stations by Using Triangular Lattice Arrays

Author:

Dicandia Francesco AlessioORCID,Genovesi Simone

Abstract

The beneficial effects of adopting a triangular lattice on phased arrays with regular and periodic grids for high-altitude platform station (HAPS) systems are presented in the scenario of massive MIMO communications operating within the 5G NR n257 and n258 frequency bands. Assessment of a planar array with 64 elements (8 × 8) is provided for both a triangular lattice and a square one in terms of array gain, average sidelobe level (ASLL), and mutual coupling. Particular attention is devoted to illustrating the impact of the antenna array lattice at the system level by evaluating its significant merits, such as its spectral efficiency (SE) and signal-to-interference ratio (SIR). The better performance exhibited by the triangular lattice array in comparison to the square one makes it appealing for the 5G massive MIMO paradigm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characteristic Modes Analysis for Circularly Polarized 1-Bit Dual-Layer Transmitarray Design;IEEE Open Journal of Antennas and Propagation;2024-02

2. Low Profile Dielectric Transmitarray Based on Additive Manufacturing Technology;2023 IEEE Conference on Antenna Measurements and Applications (CAMA);2023-11-15

3. Penrose Tesselation Strategy for Limited Field of View Array Optimization;2023 IEEE Conference on Antenna Measurements and Applications (CAMA);2023-11-15

4. Low Profile 3-D Printed Transmitarray for Future 6G Wireless Communications;2023 International Conference on Electromagnetics in Advanced Applications (ICEAA);2023-10-09

5. Analytical Study of the Dual-Band Log-Periodic Antenna with MIMO Configuration for S-Band CubeSat Application;2023 International Conference on Electrical, Electronics, Communication and Computers (ELEXCOM);2023-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3