Compensation of a Second Harmonic Wave Included in an Incident Ultrasonic Wave for the Precise Measurement of the Acoustic Nonlinearity Parameter

Author:

Song Dong-GiORCID,Choi Sungho,Kim Taehyeon,Jhang Kyung-YoungORCID

Abstract

The incident second harmonic wave is a problematic issue for the precise measurement of the acoustic nonlinearity parameter. This paper proposes a compensation method to remove the effect of the incident second harmonic component in the measurement of the absolute acoustic nonlinearity parameter using the calibration method. For this, the second harmonic component detected by the receiving transducer is considered as the sum of the component due to material nonlinearity and the component included in the incident signal and a numerical calculation model is developed as a function of the propagation distance. In the model, the factors related to the material nonlinear parameter and the magnitude of the incident second harmonic component are unknown and these are determined by finding a value that best matches the experimental data according to the change in the propagation distance; compensation for the incident second harmonic component is then achieved. The case where the phase of the second harmonic wave due to material nonlinearity is opposite to that of the fundamental wave is also considered. To verify the validity of the proposed method, fused silica and aluminum alloy Al6061-T6 specimens with different thicknesses corresponding to the propagation distance are tested. The experimental results show that the nonlinear parameters changed significantly according to the propagation distance before compensation but were very stable after compensation. Additionally, the average values of the nonlinear parameter are 11.04 in the fused silica, which is within the literature value range (10.1 to 12.4), and that for the Al6061-T6 is 6.59, which is close to the literature value range (4.5 to 6.12).

Funder

the Korea Hydro & Nuclear Power Co. Ltd

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3