Security Framework for Network-Based Manufacturing Systems with Personalized Customization: An Industry 4.0 Approach

Author:

Hammad Muhammad1ORCID,Jillani Rashad Maqbool2ORCID,Ullah Sami3ORCID,Namoun Abdallah4ORCID,Tufail Ali5ORCID,Kim Ki-Hyung6ORCID,Shah Habib7ORCID

Affiliation:

1. Faculty of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640, Pakistan

2. Faculty of Computer Science and Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640, Pakistan

3. Department of Computer Science, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan

4. Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 42351, Saudi Arabia

5. School of Digital Science, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei

6. Department of Cyber Security, Ajou University, Suwon 16499, Republic of Korea

7. Department and College of Computer Science, King Khalid University, Abha 62529, Saudi Arabia

Abstract

Smart manufacturing is pivotal in the context of Industry 4.0, as it integrates advanced technologies like the Internet of Things (IoT) and automation to streamline production processes and improve product quality, paving the way for a competitive industrial landscape. Machines have become network-based through the IoT, where integrated and collaborated manufacturing system responds in real time to meet demand fluctuations for personalized customization. Within the network-based manufacturing system (NBMS), mobile industrial robots (MiRs) are vital in increasing operational efficiency, adaptability, and productivity. However, with the advent of IoT-enabled manufacturing systems, security has become a serious challenge because of the communication of various devices acting as mobile nodes. This paper proposes the framework for a newly personalized customization factory, considering all the advanced technologies and tools used throughout the production process. To encounter the security concern, an IoT-enabled NBMS is selected as the system model to tackle a black hole attack (BHA) using the NTRUEncrypt cryptography and the ad hoc on-demand distance-vector (AODV) routing protocol. NTRUEncrypt performs encryption and decryption while sending and receiving messages. The proposed technique is simulated by network simulator NS-2.35, and its performance is evaluated for different network environments, such as a healthy network, a malicious network, and an NTRUEncrypt-secured network based on different evaluation metrics, including throughput, goodput, end-to-end delay, and packet delivery ratio. The results show that the proposed scheme performs safely in the presence of a malicious node. The implications of this study are beneficial for manufacturing industries looking to embrace IoT-enabled subtractive and additive manufacturing facilitated by mobile industrial robots. Implementation of the proposed scheme ensures operational efficiency, enables personalized customization, and protects confidential data and communication in the manufacturing ecosystem.

Funder

MSIT

ITRC

KIAT

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3