Detection of Pedestrians in Reverse Camera Using Multimodal Convolutional Neural Networks

Author:

Reveles-Gómez Luis C.1ORCID,Luna-García Huizilopoztli1ORCID,Celaya-Padilla José M.1ORCID,Barría-Huidobro Cristian2ORCID,Gamboa-Rosales Hamurabi1ORCID,Solís-Robles Roberto1ORCID,Arceo-Olague José G.1ORCID,Galván-Tejada Jorge I.1ORCID,Galván-Tejada Carlos E.1ORCID,Rondon David3ORCID,Villalba-Condori Klinge O.4ORCID

Affiliation:

1. Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico

2. Centro de Investigación en Ciberseguridad, Universidad Mayor de Chile, Manuel Montt 367, Providencia 7500628, Chile

3. Departamento Estudios Generales, Universidad Continental, Arequipa 04001, Peru

4. Vicerrectorado de Investigación, Universidad Católica de Santa María, Yanahuara 04013, Peru

Abstract

In recent years, the application of artificial intelligence (AI) in the automotive industry has led to the development of intelligent systems focused on road safety, aiming to improve protection for drivers and pedestrians worldwide to reduce the number of accidents yearly. One of the most critical functions of these systems is pedestrian detection, as it is crucial for the safety of everyone involved in road traffic. However, pedestrian detection goes beyond the front of the vehicle; it is also essential to consider the vehicle’s rear since pedestrian collisions occur when the car is in reverse drive. To contribute to the solution of this problem, this research proposes a model based on convolutional neural networks (CNN) using a proposed one-dimensional architecture and the Inception V3 architecture to fuse the information from the backup camera and the distance measured by the ultrasonic sensors, to detect pedestrians when the vehicle is reversing. In addition, specific data collection was performed to build a database for the research. The proposed model showed outstanding results with 99.85% accuracy and 99.86% correct classification performance, demonstrating that it is possible to achieve the goal of pedestrian detection using CNN by fusing two types of data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference58 articles.

1. World Health Organization (2023, April 05). Trauma Caused by Traffic. Available online: https://www.who.int/es/news-room/fact-sheets/detail/road-traffic-injuries.

2. Instituto Nacional de Estadística y Geografía (INEGI) (2023, April 05). Statistics on the Occasion of the World Day of Remembrance for Road Crash Victims. Available online: https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2022/EAP_VICACCT22.pdf.

3. Brookhuis, K.A., De Waard, D., and Janssen, W.H. (2001). Behavioural impacts of advanced driver assistance systems—An overview. Eur. J. Transp. Infrastruct. Res., 1.

4. Parera, A.M. (2000). Sistemas de Seguridad y Confort en Vehículos Automóviles, Marcombo.

5. Dorado Pineda, M., Mendoza Díaz, A., and Abarca Pérez, E. (2016). Visión Cero en Seguridad Vial: Algunas Oportunidades de Implementación en México, Instituto Mexicano del Transporte. Publicacion Tecnica.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3