Determination of Impact Damage in CFRP via PVDF Signal Analysis with Support Vector Machine

Author:

Oh Hyun-Taik,Won Jong-Ick,Woo Sung-ChoongORCID,Kim Tae-Won

Abstract

Carbon fiber reinforced plastics (CFRPs) have high specific stiffness and strength, but they are vulnerable to transverse loading, especially low-velocity impact loadings. The impact damage may cause serious strength reduction in CFRP structure, but the damage in a CFRP is mainly internal and microscopic, that it is barely visible. Therefore, this study proposes a method of determining impact damage in CFRP via poly(vinylidene fluoride) (PVDF) sensor, which is convenient and has high mechanical and electrical performance. In total, 114 drop impact tests were performed to investigate on impact responses and PVDF signals due to impacts. The test results were analyzed to determine the damage of specimens and signal features, which are relevant to failure mechanisms were extracted from PVDF signals by means of discrete wavelet transform (DWT). Support vector machine (SVM) was used for optimal classification of damage state, and the model using radial basis function (RBF) kernel showed the best performance. The model was validated through a 4-fold cross-validation, and the accuracy was reported to be 92.30%. In conclusion, impact damage in CFRP structures can be effectively determined using the spectral analysis and the machine learning-based classification on PVDF signals.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3