Computer-Aided Design of Boron Nitride-Based Membranes with Armchair and Zigzag Nanopores for Efficient Water Desalination

Author:

Tsukanov Alexey A.,Shilko Evgeny V.ORCID

Abstract

Recent studies have shown that the use of membranes based on artificial nanoporous materials can be effective for desalination and decontamination of water, separation of ions and gases as well as for solutions to other related problems. Before the expensive stages of synthesis and experimental testing, the search of the optimal dimensions and geometry of nanopores for the water desalination membranes can be done using computer-aided design. In the present study, we propose and examine the assumption that rectangular nanopores with a high aspect ratio would demonstrate excellent properties in terms of water permeation rate and ion rejection. Using the non-equilibrium molecular dynamic simulations, the properties of promising hexagonal boron nitride (h-BN) membranes with rectangular nanopores were predicted. It has been found that not only the nanopore width but also its design (“armchair” or “zigzag”) determines the permeability and ion selectivity of the h-BN-based membrane. The results show that membranes with a zigzag-like design of nanopores of ~6.5 Å width and the armchair-like nanopores of ~7.5 Å width possess better efficiency compared with other considered geometries. Moreover, the estimated efficiency of these membranes is higher than that of any commercial membranes and many other previously studied single-layer model membranes with other designs of the nanopores.

Publisher

MDPI AG

Subject

General Materials Science

Reference52 articles.

1. United Nations Site, Global Issues: WaterURL-https://www.un.org/en/sections/issues-depth/water/index.html

2. Recent Advances in Nanoporous Membranes for Water Purification

3. Emerging opportunities for nanotechnology to enhance water security

4. Rationally Fabricated Nanomaterials for Desalination and Water Purification;Dongre,2018

5. Water desalination using nanoporous single-layer graphene

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3