Interactive Changes in Climatic and Hydrological Droughts, Water Quality, and Land Use/Cover of Tajan Watershed, Northern Iran

Author:

Avand Mohammadtaghi1ORCID,Moradi Hamid Reza1,Hazbavi Zeinab2ORCID

Affiliation:

1. Department of Watershed Science and Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor 46417-76489, Mazandaran, Iran

2. Department of Rangeland and Watershed Management, Faculty of Agriculture and Natural Resources, Water Management Research Center, University of Mohaghegh Ardabili, Ardabil 56199-11367, Ardabil, Iran

Abstract

In response to novel and complex uncertainties, the present research is conducted to characterize the most significant indicators of watershed health including drought, water quality, and vegetation for the Tajan watershed, Mazandaran, Iran. The Standardized Precipitation Index (SPI) and Streamflow Drought Index (SDI) are, respectively, used to quantify the meteorological and hydrological droughts in the present (1993–2020) and future (2023–2050) employing optimistic RCP2.6 and pessimistic RCP8.5 scenarios. To concoct discharge data for the future, IHACRES v1.0 software is used with a Nash–Sutcliffe coefficient (NSE) of 0.48 and a coefficient of determination (R2) of 0.58. Maps of land use and Normalized Difference Vegetation Index (NDVI) are also prepared using Landsat images. Subsequently, the surface water quality is assessed using AqQA v1.1.0 software. The results show the difference in the severity of future meteorological droughts in different stations. In addition, the predominance of non-drought (SDI ≥ 0) or mild drought (−1 ≤ SDI < 0) is indicated for future hydrology. The land use changes show a decrease in rangeland (−5.47%) and an increase in residential land (9.17%). The water quality analysis also indicates an increase in carbonate ions in the watershed outlet. Communicating the relationships between study indicators, which is a big gap in the current watershed management approach, avoids future failures and catastrophes.

Funder

Iran National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3