Abstract
The Chinese Loess Plateau (CLP) is known for its complex topography of hills and gullies, and lots of human land-use management activities have been put into practice to sustain the soil, water and other natural resources. Afforestation has been widely applied on the CLP and it’s important to understand the effects of topography on these planted trees. However, the coarse spatial resolution of remote sensing data makes it insensitive to local topography, and the traditional in-situ measurements would consume vast amounts of time and resources. In this study, a small headwater catchment of the CLP was selected to study the effects of topography on the planted trees. Low altitude unmanned aerial vehicle based light detection and ranging (UAV-based LiDAR) technology was utilized to obtain high-resolution topography and vegetation structure data. Results showed that the middle transition zone (mid-transition, slope > 45°) was an important boundary of topography in the gully area of the CLP. In the forested catchment, the area of the mid-transition zone had the lowest of tree density, canopy coverage and leaf area index due to steep slope gradient. The tall trees ten to twenty meters high were concentrated in the downhill area, which had the highest canopy coverage and leaf area index. Elevation had significant linear relationships with canopy coverage and leaf area index (p < 0.001), which revealed the impact of topography on the forest indexes of the afforestation catchment. We concluded that the high-resolution LiDAR technology facilitated the research of topography and forest interactions in land surface.
Funder
the Strategic Priority Research Program of Chinese Academy of Sciences
National Natural Science Foundation of China
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献