Following the Writer’s Path to the Dynamically Coalescing Reactive Chains Design Pattern

Author:

Oliveira Marum João Paulo1ORCID,Cunningham H. Conrad2ORCID,Jones J. Adam3ORCID,Liu Yi4ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, Syracuse University, 3-127 CST, Syracuse, NY 13244, USA

2. Department of Computer and Information Science, University of Mississippi, 201 Weir Hall, University, MS 38677, USA

3. Department of Computer Science and Engineering, Mississippi State University, 143 Rice Hall, Mississippi State, MS 39762, USA

4. Department of Computer and Information Science, University of Massachusetts Dartmouth, 302E Dion Building, Dartmouth, MA 02747, USA

Abstract

Two recent studies addressed the problem of reducing transitional turbulence in applications developed in C# on .NET. The first study investigated this problem in desktop and Web GUI applications and the second in virtual and augmented reality applications using the Unity3D game engine. The studies used similar solution approaches, but both were somewhat embedded in the details of their applications and implementation platforms. This paper examines these two families of applications and seeks to extract the common aspects of their problem definitions and solution approaches and codify the problem-solution pair as a new software design pattern. To do so, the paper adopts Wellhausen and Fiesser’s writer’s path methodology and follows it systematically to discover and write the pattern, recording the reasoning at each step. To evaluate the pattern, the paper applies it to an arbitrary C#/.NET GUI application. The resulting design pattern is named Dynamically Coalescing Reactive Chains (DCRC). It enables the approach to transitional turbulence reduction to be reused across a range of related applications, languages, and user interface technologies. The detailed example of the writer’s path can assist future pattern writers in navigating through the complications and subtleties of the pattern-writing process.

Funder

CAPES, Coordination for Enhancement of Academic Level Individuals—Brazil

University of Mississippi Department of Computer and Information Science

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3