Proteomic Profile of Glyphosate-Resistant Soybean under Combined Herbicide and Drought Stress Conditions

Author:

Benevenuto Rafael Fonseca,Zanatta Caroline Bedin,Guerra Miguel Pedro,Nodari Rubens OnofreORCID,Agapito-Tenfen Sarah Z.ORCID

Abstract

While some genetically modified (GM) plants have been targeted to confer tolerance to abiotic stressors, transgenes are impacted by abiotic stressors, causing adverse effects on plant physiology and yield. However, routine safety analyses do not assess the response of GM plants under different environmental stress conditions. In the context of climate change, the combination of abiotic stressors is a reality in agroecosystems. Therefore, the aim of this study was to analyze the metabolic cost by assessing the proteomic profiles of GM soybean varieties under glyphosate spraying and water deficit conditions compared to their non-transgenic conventional counterparts. We found evidence of cumulative adverse effects that resulted in the reduction of enzymes involved in carbohydrate metabolism, along with the expression of amino acids and nitrogen metabolic enzymes. Ribosomal metabolism was significantly enriched, particularly the protein families associated with ribosomal complexes L5 and L18. The interaction network map showed that the affected module representing the ribosome pathway interacts strongly with other important proteins, such as the chloro-plastic gamma ATP synthase subunit. Combined, these findings provide clear evidence for increasing the metabolic costs of GM soybean plants in response to the accumulation of stress factors. First, alterations in the ribosome pathway indicate that the GM plant itself carries a metabolic burden associated with the biosynthesis of proteins as effects of genetic transformation. GM plants also showed an imbalance in energy demand and production under controlled conditions, which was increased under drought conditions. Identifying the consequences of altered metabolism related to the interaction between plant transgene stress responses allows us to understand the possible effects on the ecology and evolution of plants in the medium and long term and the potential interactions with other organisms when these organisms are released in the environment.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Federal Agency for Nature Conservation

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3