Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae)

Author:

Zeng Xinhua,Diao Haixin,Ni Ziyi,Shao Li,Jiang KaiORCID,Hu Chao,Huang Qingjun,Huang Weichang

Abstract

Mycorrhizae are an important energy source for orchids that may replace or supplement photosynthesis. Most mature orchids rely on mycorrhizae throughout their life cycles. However, little is known about temporal variation in root endophytic fungal diversity and their trophic functions throughout whole growth periods of the orchids. In this study, the community composition of root endophytic fungi and trophic relationships between root endophytic fungi and orchids were investigated in Bletilla striata and B. ochracea at different phenological stages using stable isotope natural abundance analysis combined with molecular identification analysis. We identified 467 OTUs assigned to root-associated fungal endophytes, which belonged to 25 orders in 10 phyla. Most of these OTUs were assigned to saprotroph (143 OTUs), pathotroph-saprotroph (63 OTUs) and pathotroph-saprotroph-symbiotroph (18 OTUs) using FunGuild database. Among these OTUs, about 54 OTUs could be considered as putative species of orchid mycorrhizal fungi (OMF). For both Bletilla species, significant temporal variation was observed in the diversity of root endophytic fungi. The florescence and emergence periods had higher fungal community richness of total species and endemic species than did other periods. Both Bletilla species were dominated by Agaricomycetes and Basidiomycota fungi throughout the whole year; however, their abundances varied between two Bletilla species and among phenological stages. Meanwhile, the ranges of 13C and 15N natural abundance were also highly dynamic across all growth stages of Bletilla species. Compared with the surrounding autotrophic plants, significant 13C enrichments (ε13C) were found across all phenological stages, while significant 15N enrichment in the florescence period and strong 15N depletion during the fruiting period were found for both Bletilla species. We can deduce that both Bletilla species obtained carbon from root endophytic fungi during the whole year. Additionally, the temporal varying tendency of root endophytic fungal diversity was consistent with 13C enrichments, which was also accord with the nutritional requirement of plant.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3