Spermidine Suppressed the Inhibitory Effects of Polyamines Inhibitors Combination in Maize (Zea mays L.) Seedlings under Chilling Stress

Author:

Gao Canhong,Sheteiwy Mohamed S.,Lin Chen,Guan YajingORCID,Ulhassan ZaidORCID,Hu Jin

Abstract

Chilling stress greatly inhibited the seed germination, plant growth, development and productivity in this study. The current research aimed to study the effects of different polyamine (PA) inhibitor combinations (Co), e.g., D-arginine (D-Arg), difluoromethylormithine (DFMO), aminoguanidine (Ag) and methylglyoxyl–bis-(guanyhydrazone) (MGBG) at different doses, i.e., 10 µM Co, 100 µM Co, 500 µM Co, 1000 µM Co and 1000 µM Co + 1 mM Spd (Spermidine) in two inbred lines of maize (Zea mays L.), i.e., Mo17 and Huang C, a sensitive and tolerant chilling stress, respectively. The combination treatments of PA inhibitors reduced the biosynthesis of putrescine (Put) in the tissues of both studied inbred lines. Application with 500 µM Co and 1000 µM Co did not result in a significant difference in Put concentrations, except in the coleoptile of Mo17. However, combining Spd to 1000 μM of PA inhibitors enhanced the Put, Spd, spermine (Spm) and total PAs in the roots, coleoptile and mesocotyls. Put and total PAs were increased by 39.7% and 30.54%, respectively, when Spd + 1000 µM Co were applied relative to their controls. Chilling stress and PA inhibitors treatments affected both inbred lines and resulted in differences in the PA contents. Results showed that enzymes involved in the biosynthesis of PAs (ornithine decarboxylase as ODC and S-adenosylmethionine decarboxylase as SAMDC) were significantly downregulated by 1000 µM Co in the tissues of both inbred lines. In contrast, the activity of PAO, a Pas degradation enzyme, was significantly improved by 1000 µM Co under chilling stress. However, Spd + 1000 µM Co significantly improved the activities of ODC and SAMDC and their transcript levels (ODC and SAMDC2). While it significantly downregulated the PAO activity and their relative genes (PAO1, PAO2 and PAO3) under chilling stress. Overall, this study elucidates the specific roles of Spd on the pathway of PA inhibitors and PA biosynthesis metabolism in maize seed development in response to chilling stress. Moreover, the Huang C inbred line was more tolerant than Mo17, which was reflected by higher activities of PA biosynthesis-related enzymes and lower activities of PAs’ degradative-related enzymes in Huang C.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Key Research and Development Project of Zhejiang Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3