The Interactive Effect of Elevated CO2 and Herbivores on the Nitrogen-Fixing Plant Alnus incana ssp. rugosa

Author:

Chen HaoranORCID,Markham JohnORCID

Abstract

Many studies have found that future predicted CO2 levels can increase plant mass but dilute N content in leaves, impacting antiherbivore compounds. Nitrogen-fixing plants may balance their leaf C:N ratio under elevated CO2, counteracting this dilution effect. However, we know little of how plants respond to herbivores at the higher CO2 levels that occurred when nitrogen-fixing plants first evolved. We grew Alnus incana ssp. rugosa was grown at 400, 800, or 1600 ppm CO2 in soil collected from the field, inoculated with Frankia and exposed to herbivores (Orgyia leucostigma). Elevated CO2 increased nodulated plant biomass and stimulated the nitrogen fixation rate in the early growth stage. However, nitrogen-fixing plants were not able to balance their C:N ratio under elevated CO2 after growing for 19 weeks. When plants were grown at 400 and 1600 ppm CO2, herbivores preferred to feed on leaves of nodulated plants. At 800 ppm CO2, nodulated plants accumulated more total phenolic compounds in response to herbivore damage than plants in the non-Frankia and non-herbivore treatments. Our results suggest that plant leaf defence, not leaf nutritional content, is the dominant driver of herbivory and nitrogen-fixing plants have limited ability to balance C:N ratios at elevated CO2 in natural soil.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3