Foliar Nourishment with Nano-Selenium Dioxide Promotes Physiology, Biochemistry, Antioxidant Defenses, and Salt Tolerance in Phaseolus vulgaris

Author:

Rady Mostafa M.ORCID,Desoky El-Sayed M.,Ahmed Safia M.,Majrashi Ali,Ali Esmat F.ORCID,Arnaout Safaa M. A. I.,Selem Eman

Abstract

Novel strategic green approaches are urgently needed to raise the performance of plants subjected to stress. Two field-level experimental attempts were implemented during two (2019 and 2020) growing seasons to study the possible effects of exogenous nourishment with selenium dioxide nanoparticles (Se-NPs) on growth, physio-biochemical ingredients, antioxidant defenses, and yield of Phaseolus vulgaris (L.) plant growing on a salt-affected soil (EC = 7.55–7.61 dS m−1). At 20, 30, and 40 days from seeding, three foliar sprays were applied to plants with Se-NPs at a rate of 0.5, 1.0, or 1.5 mM. The experimental design was accomplished in randomized complete plots. The data indicate noteworthy elevations in indicators related to growth and yield; pigments related to effective photosynthesis, osmoprotectant (free proline and soluble sugars), nutrient and Se contents, K+/Na+ ratio, cell integrity (water content and stability of membranes), all enzyme activities; and all features related to leaf anatomy induced by Se-NPs foliar spray. Conversely, marked lowering in markers of Na+ content-induced oxidative stress (superoxide radical and hydrogen peroxide) and their outcomes in terms of ionic leakage and malondialdehyde were reported by foliar nourishment with Se-NPS compared to spraying leaves with water as an implemented control. The best results were recorded with Se-NPs applied at 1.0 mM, which mitigated the negative effects of soil salinity (control results). Therefore, the outcomes of this successful study recommend the use of Se-NPs at a rate of 1.0 mM as a foliar spray to grow common beans on saline soils with EC up to 7.55–7.61 dS m−1.

Funder

Taif University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3