Role of Engineered Carbon Nanoparticles (CNPs) in Promoting Growth and Metabolism of Vigna radiata (L.) Wilczek: Insights into the Biochemical and Physiological Responses

Author:

Shekhawat Gyan SinghORCID,Mahawar LovelyORCID,Rajput Priyadarshani,Rajput Vishnu D.ORCID,Minkina TatianaORCID,Singh Rupesh Kumar

Abstract

Despite the documented significance of carbon-based nanomaterials (CNMs) in plant development, the knowledge of the impact of carbon nanoparticles (CNPs) dosage on physiological responses of crop plants is still scarce. Hence, the present study investigates the concentration-dependent impact of CNPs on the morphology and physiology of Vigna radiata. Crop seedlings were subjected to CNPs at varying concentrations (25 to 200 µM) in hydroponic medium for 96 h to evaluate various physiological parameters. CNPs at an intermediate concentration (100 to 150 µM) favor the growth of crops by increasing the total chlorophyll content (1.9-fold), protein content (1.14-fold) and plant biomass (fresh weight: 1.2-fold, dry weight: 1.14-fold). The highest activity of antioxidants (SOD, GOPX, APX and proline) was also recorded at these concentrations, which indicates a decline in ROS level at 100 µM. At the highest CNPs treatment (200 µM), aggregation of CNPs was observed more on the root surface and accumulated in higher concentrations in the plant tissues, which limits the absorption and translocation of nutrients to plants, and hence, at these concentrations, the oxidative damage imposed by CNPs is evaded with the rise in activity of antioxidants. These findings show the importance of CNPs as nano-fertilizers that not only improve plant growth by their slow and controlled release of nutrients, but also enhance the stress-tolerant and phytoremediation efficiency of plants in the polluted environment due to their enormous absorption potential.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3