Particle Retention Capacity, Efficiency, and Mechanism of Selected Plant Species: Implications for Urban Planting for Improving Urban Air Quality

Author:

Wang Huixia,Shi Hui

Abstract

Atmospheric particulate matter (PM) has been of concern owing to its negative effects on human health and its role in environmental degradation. For mitigation purposes, it is important to select the most efficient plant species in urban greening. Here, a fast, cost-saving methodology was first added to the conventional method to investigate the size-resolved PM retention capacity and efficiency of twenty plant species. Surface PM (SPM), which can be removed by water and brushing, accounted for 44.9–66.9% of total PM, in which the water-soluble PM (DPM) accounted for 12.9–22.1% of total PM. A large mass proportion of in-wax PM (14.1–31.7%) was also observed. Platycladus orientalis, Eriobotrya japonica, Viburnum odoratissimum, Magnolia grandiflora had the highest AEleaf (retention efficiency on per unit leaf area) to retain SPM within different diameter classes (DPM, PM0.1–2.5, PM2.5–10, PM>10). AEplant (retention efficiency of individual tree) varied greatly among different plant species, mainly due to the dependence on the total area of a tree. AEland (retention efficiency on per unit green area) is a suitable index for PM retention ability and efficiency. In general, P. orientalis, V. odoratissimum, Pittosporum tobira, Photinia serrulate, M. grandiflora, E. japonica were the efficient species in retaining PM at different scales (i.e., leaf, individual tree, green area). The species like Trifolium repens, Phyllostachys viridis, were the least efficient plant species. The investigated species are all evergreen species, which will remove PM throughout the whole year, even in winter. So, we recommended that the plant species with the highest PM retention efficiency can be used in urban greening. Meanwhile, horticulture practices should also be considered to improve the leaf area index to improve their PM retention and air purification abilities.

Funder

Scientific Research Plan Projects of Shaanxi Education Department

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference49 articles.

1. Spatial assessment of air quality patterns in Malaysia using multivariate analysis

2. Understanding global PM2.5 concentrations and their drivers in recent decades (1998–2016)

3. Evolution of WHO Air Quality Guidelines: Past, Present and Future,2017

4. Efficient Removal of Ultrafine Particles from Diesel Exhaust by Selected Tree Species: Implications for Roadside Planting for Improving the Quality of Urban Air

5. Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe, Caucasus and Central Asiahttp://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3