Physiological, Biochemical and Yield-Component Responses of Solanum tuberosum L. Group Phureja Genotypes to a Water Deficit

Author:

Diaz-Valencia Paula,Melgarejo Luz MarinaORCID,Arcila Ivon,Mosquera-Vásquez TeresaORCID

Abstract

Water deficits are the major constraint in some potato-growing areas of the world. The effect is most severe at the tuberization stage, resulting in lower yield. Therefore, an assessment of genetic and phenotypic variations resulting from water deficits in Colombia germplasm is required to accelerate breeding efforts. Phenotypic variations in response to a water deficit were studied in a collection of Solanum tuberosum Group Phureja. A progressive water deficit experiment on the tuberization stage was undertaken using 104 genotypes belonging to the Working Collection of the Potato Breeding Program at the Universidad Nacional de Colombia. The response to water deficit conditions was assessed with the relative chlorophyll content (CC), maximum quantum efficiency of PSII (Fv/Fm), relative water content (RWC), leaf sugar content, tuber number per plant (TN) and tuber fresh weight per plant (TW). Principal Component Analysis (PCA) and cluster analysis were used, and the Drought Tolerance Index (DTI) was calculated for the variables and genotypes. The soluble sugar contents increased significantly under the deficit conditions in the leaves, with a weak correlation with yield under both water treatments. The PCA results revealed that the physiological, biochemical and yield-component variables had broad variation, while the yield-component variables more powerfully distinguished between the tolerant and susceptible genotypes than the physiological and biochemical variables. The PCA and cluster analysis based on the DTI revealed different levels of water deficit tolerance for the 104 genotypes. These results provide a foundation for future research directed at understanding the molecular mechanisms underlying potato tolerance to water deficits.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3