Alternative Pathway Is Involved in Hydrogen Peroxide-Enhanced Cadmium Tolerance in Hulless Barley Roots

Author:

He Li,Wang Xiaomin,Na Xiaofan,Feng Ruijun,He Qiang,Wang Shengwang,Liang Cuifang,Yan Lili,Zhou Libin,Bi YurongORCID

Abstract

Hulless barley, grown in the Qinghai Tibet Plateau, has a wide range of environmental stress tolerance. Alternative pathway (AP) and hydrogen peroxide (H2O2) are involved in enhancing plant tolerance to environmental stresses. However, the relationship between H2O2 and AP in hulless barley tolerance to cadmium (Cd) stress remains unclear. In the study, the role and relationship of AP and H2O2 under Cd stress were investigated in hulless barley (Kunlun14) and common barley (Ganpi6). Results showed that the expression level of alternative oxidase (AOX) genes (mainly AOX1a), AP capacity (Valt), and AOX protein were clearly induced more in Kunlun14 than in Ganpi 6 under Cd stress; moreover, these parameters were further enhanced by applying H2O2. Malondialdehyde (MDA) content, electrolyte leakage (EL) and NAD(P)H to NAD(P) ratio also increased in Cd-treated roots, especially in Kunlun 14, which can be markedly alleviated by exogenous H2O2. However, this mitigating effect was aggravated by salicylhydroxamic acid (SHAM, an AOX inhibitor), suggesting AP contributes to the H2O2-enhanced Cd tolerance. Further study demonstrated that the effect of SHAM on the antioxidant enzymes and antioxidants was minimal. Taken together, hulless barley has higher tolerance to Cd than common barley; and in the process, AP exerts an indispensable function in the H2O2-enhanced Cd tolerance. AP is mainly responsible for the decrease of ROS levels by dissipating excess reducing equivalents.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3