Abstract
Hulless barley, grown in the Qinghai Tibet Plateau, has a wide range of environmental stress tolerance. Alternative pathway (AP) and hydrogen peroxide (H2O2) are involved in enhancing plant tolerance to environmental stresses. However, the relationship between H2O2 and AP in hulless barley tolerance to cadmium (Cd) stress remains unclear. In the study, the role and relationship of AP and H2O2 under Cd stress were investigated in hulless barley (Kunlun14) and common barley (Ganpi6). Results showed that the expression level of alternative oxidase (AOX) genes (mainly AOX1a), AP capacity (Valt), and AOX protein were clearly induced more in Kunlun14 than in Ganpi 6 under Cd stress; moreover, these parameters were further enhanced by applying H2O2. Malondialdehyde (MDA) content, electrolyte leakage (EL) and NAD(P)H to NAD(P) ratio also increased in Cd-treated roots, especially in Kunlun 14, which can be markedly alleviated by exogenous H2O2. However, this mitigating effect was aggravated by salicylhydroxamic acid (SHAM, an AOX inhibitor), suggesting AP contributes to the H2O2-enhanced Cd tolerance. Further study demonstrated that the effect of SHAM on the antioxidant enzymes and antioxidants was minimal. Taken together, hulless barley has higher tolerance to Cd than common barley; and in the process, AP exerts an indispensable function in the H2O2-enhanced Cd tolerance. AP is mainly responsible for the decrease of ROS levels by dissipating excess reducing equivalents.
Funder
National Natural Science Foundation of China
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献