Robotic Spot Spraying of Harrisia Cactus (Harrisia martinii) in Grazing Pastures of the Australian Rangelands

Author:

Calvert Brendan,Olsen Alex,Whinney James,Rahimi Azghadi Mostafa

Abstract

Harrisia cactus, Harrisia martinii, is a serious weed affecting hundreds of thousands of hectares of native pasture in the Australian rangelands. Despite the landmark success of past biological control agents for the invasive weed and significant investment in its eradication by the Queensland Government (roughly $156M since 1960), it still takes hold in the cooler rangeland environments of northern New South Wales and southern Queensland. In the past decade, landholders with large infestations in these locations have spent approximately $20,000 to $30,000 per annum on herbicide control measures to reduce the impact of the weed on their grazing operations. Current chemical control requires manual hand spot spraying with high quantities of herbicide for foliar application. These methods are labour intensive and costly, and in some cases inhibit landholders from performing control at all. Robotic spot spraying offers a potential solution to these issues, but existing solutions are not suitable for the rangeland environment. This work presents the methods and results of an in situ field trial of a novel robotic spot spraying solution, AutoWeed, for treating harrisia cactus that (1) more than halves the operation time, (2) can reduce herbicide usage by up to 54% and (3) can reduce the cost of herbicide by up to $18.15 per ha compared to the existing hand spraying approach. The AutoWeed spot spraying system used the MobileNetV2 deep learning architecture to perform real time spot spraying of harrisia cactus with 97.2% average recall accuracy and weed knockdown efficacy of up to 96%. Experimental trials showed that the AutoWeed spot sprayer achieved the same level of knockdown of harrisia cactus as traditional hand spraying in low, medium and high density infestations. This work represents a significant step forward for spot spraying of weeds in the Australian rangelands that will reduce labour and herbicide costs for landholders as the technology sees more uptake in the future.

Funder

Department of Agriculture and Water Resources, Australian Government

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3