Abstract
Duckweeds (Lemnaceae species) are extensively used models in ecotoxicology, and chlorophyll fluorescence imaging offers a sensitive and high throughput platform for phytotoxicity assays with these tiny plants. However, the vast number of potentially applicable chlorophyll fluorescence-based test endpoints makes comparison and generalization of results hard among different studies. The present study aimed to jointly measure and compare the sensitivity of various chlorophyll fluorescence parameters in Spirodela polyrhiza (giant duckweed) plants exposed to nickel, chromate (hexavalent chromium) and sodium chloride for 72 h, respectively. The photochemistry of Photosystem II in both dark- and light-adapted states of plants was assessed via in vivo chlorophyll fluorescence imaging method. Our results indicated that the studied parameters responded with very divergent sensitivity, highlighting the importance of parallelly assessing several chlorophyll fluorescence parameters. Generally, the light-adapted parameters were more sensitive than the dark-adapted ones. Thus, the former ones might be the preferred endpoints in phytotoxicity assays. Fv/Fm, i.e., the most extensively reported parameter literature-wise, proved to be the least sensitive endpoint; therefore, future studies might also consider reporting Fv/Fo, as its more responsive analogue. The tested toxicants induced different trends in the basic chlorophyll fluorescence parameters and, at least partly, in relative proportions of different quenching processes, suggesting that a basic distinction of water pollutants with different modes of action might be achievable by this method. We found definite hormetic patterns in responses to several endpoints. Hormesis occurred in the concentration ranges where the applied toxicants resulted in strong growth inhibition in longer-term exposures of the same duckweed clone in previous studies. These findings indicate that changes in the photochemical efficiency of plants do not necessarily go hand in hand with growth responses, and care should be taken when one exclusively interprets chlorophyll fluorescence-based endpoints as general proxies for phytotoxic effects.
Funder
National Research, Development and Innovation Office
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference81 articles.
1. Environment Canada Biological Test Method-Test for Measuring the Inhibition of Growth Using the Freshwater Macrophyte Lemna minor,2007
2. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era
3. Relativein vitrogrowth rates of duckweeds (Lemnaceae) - the most rapidly growing higher plants
4. Water Quality-Determination of Toxic Effect of Water Constituents and Waste Water to Duckweed (Lemna minor)—Duckweed Growth Inhibition Test,2005
5. OECD Guidelines for the Testing of Chemicals, Revised Proposal for a New Guideline 221, Lemna Sp. Growth Inhibition Test,2006
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献