Abstract
Given that the global winegrape planting area is 7.2 × 106 hm2, the potential for winegrape crop-mediated carbon capture and storage as an approach to reducing greenhouse gas emissions warranted further research. Herein, we employed an allometric model of various winegrape organs to assess biomass distributions, and we evaluated the carbon storage distribution characteristics associated with vineyard ecosystems in the Hongsibu District of Ningxia. We found that the total carbon storage of the Vitis vinifera ‘Cabernet Sauvignon’ vineyard ecosystem was 55.35 t·hm−2, of which 43.12 t·hm−2 came from the soil, while the remaining 12.23 t·hm−2 was attributable to various vine components including leaves (1.85 t·hm−2), fruit (2.16 t·hm−2), canes (1.83 t·hm−2), perennial branches (2.62 t·hm−2), and roots (3.78 t·hm−2). Together, these results suggested that vineyards can serve as an effective carbon sink, with the majority of carbon being sequestered at the soil surface. Within the grapevines themselves, most carbon was stored in perennial organs including perennial branches and roots. Allometric equations based on simple and practical biomass and biometric measurements offer a means whereby grape-growers and government entities responsible for ecological management can better understand carbon distribution patterns associated with vineyards.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献