Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines

Author:

Kumar Sonika,Ruggles Ashleigh,Logan Sam,Mazarakis Alora,Tyson Thomas,Bates Matthew,Grosse Clayton,Reed David,Li ZhigangORCID,Grimwood Jane,Schmutz Jeremy,Saski Christopher

Abstract

Somatic embryogenesis-mediated plant regeneration is essential for the genetic manipulation of agronomically important traits in upland cotton. Genotype specific recalcitrance to regeneration is a primary challenge in deploying genome editing and incorporating useful transgenes into elite cotton germplasm. In this study, transcriptomes of a semi-recalcitrant cotton (Gossypium hirsutum L.) genotype ‘Coker312’ were analyzed at two critical stages of somatic embryogenesis that include non-embryogenic callus (NEC) and embryogenic callus (EC) cells, and the results were compared to a non-recalcitrant genotype ‘Jin668’. We discovered 305 differentially expressed genes in Coker312, whereas, in Jin668, about 6-fold more genes (2155) were differentially expressed. A total of 154 differentially expressed genes were common between the two genotypes. Gene enrichment analysis of the upregulated genes identified functional categories, such as lipid transport, embryo development, regulation of transcription, sugar transport, and vitamin biosynthesis, among others. In Coker312 EC cells, five major transcription factors were highly upregulated: LEAFY COTYLEDON 1 (LEC1), WUS-related homeobox 5 (WOX5), ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and WRKY2. In Jin668, LEC1, BABY BOOM (BBM), FUS3, and AGAMOUS-LIKE15 (AGL15) were highly expressed in EC cells. We also found that gene expression of these embryogenesis genes was typically higher in Jin668 when compared to Coker312. We conclude that significant differences in the expression of the above genes between Coker312 and Jin668 may be a critical factor affecting the regenerative ability of these genotypes.

Funder

Center for the Advancement of Science in Space

NASA Headquarters

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3