Carboxylation Capacity Can Limit C3 Photosynthesis at Elevated CO2 throughout Diurnal Cycles

Author:

Bunce JamesORCID

Abstract

The response of carbon fixation in C3 plants to elevated CO2 is relatively larger when photosynthesis is limited by carboxylation capacity (VC) than when limited by electron transport (J). Recent experiments under controlled, steady-state conditions have shown that photosynthesis at elevated CO2 may be limited by VC even at limiting PPFD. These experiments were designed to test whether this also occurs in dynamic field environments. Leaf gas exchange was recorded every 5 min using two identical instruments both attached to the same leaf. The CO2 concentration in one instrument was controlled at 400 μmol mol−1 and one at 600 μmol mol−1. Leaves were exposed to ambient sunlight outdoors, and cuvette air temperatures tracked ambient outside air temperature. The water content of air in the leaf cuvettes was kept close to that of the ambient air. These measurements were conducted on multiple, mostly clear days for each of three species, Glycine max, Lablab purpureus, and Hemerocallis fulva. The results indicated that in all species, photosynthesis was limited by VC rather than J at both ambient and elevated CO2 both at high midday PPFDs and also at limiting PPFDs in the early morning and late afternoon. During brief reductions in PPFD due to midday clouds, photosynthesis became limited by J. The net result of the apparent deactivation of Rubisco at low PPFD was that the relative stimulation of diurnal carbon fixation at elevated CO2 was larger than would be predicted when assuming limitation of photosynthesis by J at low PPFD.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3