Effects of Irrigation and Fertilization on the Morphophysiological Traits of Populus sibirica Hort. Ex Tausch and Ulmus pumila L. in the Semiarid Steppe Region of Mongolia

Author:

Byambadorj Ser-OddambaORCID,Park Byung BaeORCID,Hernandez Jonathan O.ORCID,Tsedensodnom Enkhchimeg,Byambasuren Otgonsaikhan,Montagnoli AntonioORCID,Chiatante DonatoORCID,Nyam-Osor BatkhuuORCID

Abstract

Desertification is impeding the implementation of reforestation efforts in Mongolia. Many of these efforts have been unsuccessful due to a lack of technical knowledge on water and nutrient management strategies, limited financial support, and short-lived rainfall events. We investigated the effects of irrigation and fertilization on the morphophysiological traits of Populus sibirica Hort. Ex Tausch and Ulmus pumila L. and to suggest irrigation and fertilization strategies for reforestation. Different irrigation and fertilizer treatments were applied: no irrigation, 2 L h−1, 4 L h−1, and 8 L h−1 of water; no fertilizer, 2 L h−1 + NPK, 4 L h−1 + NPK, and 8 L h−1 + NPK; and no compost, 2 L h−1 + compost, 4 L h−1 + compost, and 8 L h−1 + compost. The leaf area (LA) and specific leaf area (SLA) of both species responded positively to 4 and 8 L h−1. Results also showed that the addition of either NPK or compost to 4 or 8 L h−1 irrigation resulted in a higher LA, SLA, and leaf biomass (LB). Total chlorophyll content decreased with irrigation in both species. The same pattern was detected when a higher amount of irrigation was combined with fertilizers. Lastly, we found that both diurnal and seasonal leaf water potential of plants grown in 4 or 8 L h−1 were significantly higher than those of plants grown in control plots. Therefore, 4 or 8 L h−1 with either NPK or compost has shown to be the optimal irrigation and fertilization strategy for the species in an arid and semiarid region of Mongolia. Results should provide us with a better understanding of tree responses to varying amounts of irrigation with or without fertilizer in pursuit of sustainable forest management in arid and semiarid ecosystems.

Funder

R&D Program for Forest Science Technology provided by the Korea Forest Service

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3