Selective Anticancer Properties, Proapoptotic and Antibacterial Potential of Three Asplenium Species

Author:

Petkov VenelinORCID,Batsalova Tsvetelina,Stoyanov Plamen,Mladenova Tsvetelina,Kolchakova Desislava,Argirova Mariana,Raycheva Tsvetanka,Dzhambazov BalikORCID

Abstract

The ferns Asplenium ceterach L., Asplenium scolopendrium L. and Asplenium trichomanes L. have wide application in traditional medicine worldwide. However, the scientific research on their anticancer and antibacterial properties is insufficient. The present article aims to provide more information on this topic. Extracts derived from the aerial parts of A. ceterach, A. scolopendrium and A. trichomanes were examined using a panel of in vitro assays with different bacterial and mammalian cells. The cytotoxicity and anticancer activity of the samples were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Trypan blue assays with three human (A549, FL, HeLa) and three murine (3T3, TIB-71, LS48) cell lines. Inhibitory effects on the growth of Gram-positive (Bacillus cereus) and Gram-negative (Pseudomonas aeruginosa) bacteria were determined by the agar diffusion assay. Apoptosis-inducing properties of the extracts were analyzed by flow cytometry. Superoxide dismutase (SOD) activity in extract-treated cells was investigated by ELISA. The obtained results demonstrate selective anticancer activity of all three Asplenium species. The extract from A. ceterach displayed the strongest inhibitory properties against human cervical cancer cells and bacterial cells. It induced a lower level of cytotoxicity against mouse cell lines, indicating a species-specific effect. The extract from A. trichomanes demonstrated better anticancer and antibacterial properties than the sample from A. scolopendrium. Further experiments linked the mechanism of action of A. ceterach extract with oxidative stress-inducing potential and strong proapoptotic potential against the cervical cancer cell line HeLa. A. trichomanes and A. scolopendrium extracts appeared to be potent inducers of necrotic cell death.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3