Spectroscopic and Molecular Methods to Differentiate Gender in Immature Date Palm (Phoenix dactylifera L.)

Author:

Khan Abdul LatifORCID,Al-Harrasi AhmedORCID,Numan Muhammad,AbdulKareem Noor Mazin,Mabood FazalORCID,Al-Rawahi Ahmed

Abstract

Phoenix dactylifera (date palm) is a well-known nutritious and economically important fruit tree found in arid regions of the Middle East and North Africa. Being diploid, it has extremely high divergence in gender, where sex differentiation in immature date palms (Phoenix dactylifera L.) has remained an enigma in recent years. Herein, new robust infrared (near-infrared reflectance spectroscopy (NIRS) and Fourier transform infrared attenuated total reflectance (FTIR/ATR)) and nuclear magnetic resonance (NMR) spectroscopy methods coupled with extensive chemometric analysis were used to identify the sex differentiation in immature date palm leaves. NIRS/FTIR reflectance and 1H-NMR profiling suggested that the signals of monosaccharides (glucose and fructose) and/or disaccharides (maltose and sucrose) play key roles in sex differentiation. The three kinds of spectroscopic data were clearly differentiated among known and unknown male and female leaves via principal component and partial least square discriminant analyses. Furthermore, sex-specific genes and molecular markers obtained from the lower halves of LG12 chromosomes showed enhanced transcript accumulation of mPdIRDP52, mPdIRDP50, and PDK101 in females compared with in males. The phylogeny showed that the mPdIRD033, mPdIRD031, and mPdCIR032 markers formed distinctive clades with more than 70% similarity in gender differentiation. The three robust analyses provide an alternative tool to differentiate sex in date palm trees, which offers a solution to the long-standing challenge of dioecism and could enhance in situ tree propagation programs.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3