Physiological and Molecular Mechanisms of ABA and CaCl2 Regulating Chilling Tolerance of Cucumber Seedlings

Author:

Feng Qian,Yang SenORCID,Wang Yijia,Lu Lu,Sun Mintao,He Chaoxing,Wang Jun,Li Yansu,Yu Xianchang,Li Qingyun,Yan Yan

Abstract

Cold stress is a limiting factor to the growth and development of cucumber in the temperate regions; hence, improving the crop’s tolerance to low temperature is highly pertinent. The regulation of low-temperature tolerance with exogenous ABA and CaCl2 was investigated in the cucumber variety Zhongnong 26. Under low-temperature conditions (day/night 12/12 h at 5 °C), seedlings were sprayed with a single application of ABA, CaCl2, or a combination of both. Our analysis included a calculated chilling injury index, malondialdehyde (MDA) content, relative electrical conductivity, antioxidant enzyme activities (SOD, CAT, and APX), leaf tissue structure, and expression of cold-related genes by transcriptome sequencing. Compared with the water control treatment, the combined ABA + CaCl2 treatment significantly improved the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) of the seedlings by 34.47%, 59.66%, and 118.80%, respectively (p < 0.05), and significantly reduced the chilling injury index, relative electrical conductivity, and MDA content, by 89.47%, 62.17%, and 44.55%, respectively (p < 0.05). Transcriptome analysis showed that compared with the water control treatment, 3442 genes were differentially expressed for the combined treatment, 3921 for the ABA treatment, and 1333 for the CaCl2 treatment. KEGG enrichment analysis for both the ABA and combined ABA + CaCl2 treatments (as compared to the water control) showed that it mainly involves genes of the photosynthesis pathway and metabolic pathways. Differentially expressed genes following the CaCl2 treatment were mainly involved in plant hormone signal transduction, plant–pathogen interaction, MAPK signaling pathway–plant, phenylpropanoid biosynthesis, and circadian rhythm–plant. qRT-PCR analysis and RNA-seq results showed a consistent trend in variation of differential gene expression. Overall, this study demonstrated that although all three treatments provided some protection, the combined treatment of ABA (35 mg/L) with CaCl2 (500 mg/L) afforded the best results. A combined ABA + CaCl2 treatment can effectively alleviate cold-stress damage to cucumber seedlings by inducing physiological changes in photosynthesis and metabolism, and provides a theoretical basis and technical support for the application of exogenous ABA and CaCl2 for low-temperature protection of cucumber seedlings.

Funder

The National Nature Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference55 articles.

1. Primary study on origin and propagation of Cucumis sativus L;An;J. Chang. Veg.,2006

2. Molecular Basis of Plant Cold Acclimation: Insights Gained from Studying the CBF Cold Response Pathway: Figure 1.

3. Research progress in physiological and mechanism of low temperature stress response in cucumber;Li;China Veg.,2019

4. Study on the mechanism and its application for tolerance ability to low temperature and poor light on cucumber;Wang;China Veg.,2005

5. Omics approaches for cold stress tolerance in plants;Sakina,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3