Microbial Diversity Characteristics of Areca Palm Rhizosphere Soil at Different Growth Stages

Author:

Ma Siyuan,Lin Yubin,Qin Yongqiang,Diao Xiaoping,Li Peng

Abstract

The rhizosphere microflora are key determinants that contribute to plant health and productivity, which can support plant nutrition and resistance to biotic and abiotic stressors. However, limited research is conducted on the areca palm rhizosphere microbiota. To further study the effect of the areca palm’s developmental stages on the rhizosphere microbiota, the rhizosphere microbiota of areca palm (Areca catechu) grown in its main producing area were examined in Wanning, Hainan province, at different vegetation stages by an Illumina Miseq sequence analysis of the 16S ribosomal ribonucleic acid and internal transcribed spacer genes. Significant shifts of the taxonomic composition of the bacteria and fungi were observed in the four stages. Burkholderia-Caballeronia-Paraburkholderia were the most dominant group in stage T1 and T2; the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium were decreased significantly from T1 to T2; and the genera Acidothermus and Bacillus were the most dominant in stage T3 and T4, respectively. Meanwhile, Neocosmospora, Saitozyma, Penicillium, and Trichoderma were the most dominant genera in the stage T1, T2, T3, and T4, respectively. Among the core microbiota, the dominant bacterial genera were Burkholderia-Caballeronia-Paraburkholderia and Bacillus, and the dominant fungal genera were Saitozyma and Trichoderma. In addition, we identified five bacterial genera and five fungal genera that reached significant levels during development. Finally, we constructed the OTU (top 30) interaction network of bacteria and fungi, revealed its interaction characteristics, and found that the bacterial OTUs exhibited more extensive interactions than the fungal OTUs. Understanding the rhizosphere soil microbial diversity characteristics of the areca palm could provide the basis for exploring microbial association and maintaining the areca palm’s health.

Funder

Hainan Major Research Project of Science and Technologysupported

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference31 articles.

1. The Palms of Southern Asia,2009

2. Areca catechu —From farm to food and biomedical applications

3. Studies on Genetic Relationships and Diversity in Arecanut (Areca catechu L.) Germplasm Utilizing RAPD Markers;Bharath;J. Plant. Crop.,2015

4. Chromosome‐scale genome assembly of areca palm ( Areca catechu )

5. Transcriptome sequencing and de novo assembly in arecanut, Areca catechu L elucidates the secondary metabolite pathway genes

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3