Performance of Winter-Sown Cereal Catch Crops after Simulated Forage Crop Grazing in Southland, New Zealand

Author:

Malcolm Brendon,Maley Shane,Teixeira Edmar,Johnstone Paul,de Ruiter John,Brown Hamish,Armstrong Stewart,Dellow Steven,George Mike

Abstract

(1) Background: Winter grazing of livestock poses significant environmental risks of nitrogen (N) leaching and sediment runoff. (2) Methods: A field study tested the effects of sowing catch crops of oats (Avena sativa L.), ryecorn (Secale cereale L.) or triticale (Triticosecale) in June and August (winter) in Southland, New Zealand (NZ), on the risk of N leaching losses from simulated N loads left after winter forage grazing. (3) Results: Catch crops took up 141–191 kg N ha−1 by green-chop silage maturity (approximately Zadoks growth stage 52; November/December). Importantly, early-sown catch crops were able to capture more N during the key leaching period from winter to mid-spring (77–106 kg N ha−1 cf. 27–31 kg N ha−1 for June and August treatments, respectively). At this time, ryecorn and triticale crops sown in June captured 20–29 kg ha−1 more N than June-sown oats (77 kg N ha−1). In October, early-sown catch crops reduced mineral N in the soil profile (0–45 cm depth) by 69–141 kg N ha−1 through the process of plant uptake. At green-chop silage maturity, catch crop yields ranged from 6.6 to 14.6 t DM ha−1. Highest yields and crop quality profiles (e.g., metabolizable energy, crude protein, soluble sugars and starch) were achieved by the oats, irrespective of the sowing date, indicating that trade-offs likely exist between environmental and productive performances of the catch crop species tested. (4) Conclusion: The catch crop of choice by farmers will depend on the desired end use for the crop, its place in the crop rotation and its potential for an environmental benefit.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3