Phenocave: An Automated, Standalone, and Affordable Phenotyping System for Controlled Growth Conditions

Author:

Leiva Fernanda,Vallenback Pernilla,Ekblad Tobias,Johansson EvaORCID,Chawade AakashORCID

Abstract

Controlled plant growth facilities provide the possibility to alter climate conditions affecting plant growth, such as humidity, temperature, and light, allowing a better understanding of plant responses to abiotic and biotic stresses. A bottleneck, however, is measuring various aspects of plant growth regularly and non-destructively. Although several high-throughput phenotyping facilities have been built worldwide, further development is required for smaller custom-made affordable systems for specific needs. Hence, the main objective of this study was to develop an affordable, standalone and automated phenotyping system called “Phenocave” for controlled growth facilities. The system can be equipped with consumer-grade digital cameras and multispectral cameras for imaging from the top view. The cameras are mounted on a gantry with two linear actuators enabling XY motion, thereby enabling imaging of the entire area of Phenocave. A blueprint for constructing such a system is presented and is evaluated with two case studies using wheat and sugar beet as model plants. The wheat plants were treated with different irrigation regimes or high nitrogen application at different developmental stages affecting their biomass accumulation and growth rate. A significant correlation was observed between conventional measurements and digital biomass at different time points. Post-harvest analysis of grain protein content and composition corresponded well with those of previous studies. The results from the sugar beet study revealed that seed treatment(s) before germination influences germination rates. Phenocave enables automated phenotyping of plants under controlled conditions, and the protocols and results from this study will allow others to build similar systems with dimensions suitable for their custom needs.

Funder

SLU Grogrund

NordForsk

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3