Sampling Variation of RAD-Seq Data from Diploid and Tetraploid Potato (Solanum tuberosum L.)

Author:

Dang Zhenyu,Yang Jixuan,Wang Lin,Tao QinORCID,Zhang Fengjun,Zhang Yuxin,Luo Zewei

Abstract

The new sequencing technology enables identification of genome-wide sequence-based variants at a population level and a competitively low cost. The sequence variant-based molecular markers have motivated enormous interest in population and quantitative genetic analyses. Generation of the sequence data involves a sophisticated experimental process embedded with rich non-biological variation. Statistically, the sequencing process indeed involves sampling DNA fragments from an individual sequence. Adequate knowledge of sampling variation of the sequence data generation is one of the key statistical properties for any downstream analysis of the data and for implementing statistically appropriate methods. This paper reports a thorough investigation on modeling the sampling variation of the sequence data from the optimized RAD-seq (Restriction sit associated DNA sequencing) experiments with two parents and their offspring of diploid and autotetraploid potato (Solanum tuberosum L.). The analysis shows significant dispersion in sampling variation of the sequence data over that expected under multinomial distribution as widely assumed in the literature and provides statistical methods for modeling the variation and calculating the model parameters, which may be easily implemented in real sequence datasets. The optimized design of RAD-seq experiments enabled effective control of presentation of undesirable chloroplast DNA and RNA genes in the sequence data generated.

Funder

Biotechnology and Biological Sciences Research Council

Nature Science Fundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3