Genome-Wide Identification and Characterization of the Abiotic-Stress-Responsive GRF Gene Family in Diploid Woodland Strawberry (Fragaria vesca)

Author:

Li ZhiqiORCID,Xie Qian,Yan Jiahui,Chen Jianqing,Chen QingxiORCID

Abstract

Growth regulatory factors (GRF) are plant-specific transcription factors that play an important role in plant resistance to stress. This gene family in strawberry has not been investigated previously. In this study, 10 GRF genes were identified in the genome of the diploid woodland strawberry (Fragaria vesca). Chromosome analysis showed that the 10 FvGRF genes were unevenly distributed on five chromosomes. Phylogenetic analysis resolved the FvGRF proteins into five groups. Genes of similar structure were placed in the same group, which was indicative of functional redundance. Whole-genome duplication/segmental duplication and dispersed duplication events effectively promoted expansion of the strawberry GRF gene family. Quantitative reverse transcription-PCR analysis suggested that FvGRF genes played potential roles in the growth and development of vegetative organs. Expression profile analysis revealed that FvGRF3, FvGRF5, and FvGRF7 were up-regulated under low-temperature stress, FvGRF4 and FvGRF9 were up-regulated under high-temperature stress, FvGRF6 and FvGRF8 were up-regulated under drought stress, FvGRF3, FvGRF6, and FvGRF8 were up-regulated under salt stress, FvGRF2, FvGRF7, and FvGRF9 were up-regulated under salicylic acid treatment, and FvGRF3, FvGRF7, FvGRF9, and FvGRF10 were up-regulated under abscisic acid treatment. Promoter analysis indicated that FvGRF genes were involved in plant growth and development and stress response. These results provide a theoretical and empirical foundation for the elucidation of the mechanisms of abiotic stress responses in strawberry.

Funder

Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3