Abstract
Chlorophyll fluorescence imaging was used to study potato virus X (PVX) infection of Nicotiana benthamiana. Infection-induced changes in chlorophyll fluorescence parameters (quantum yield of photosystem II photochemistry (ΦPSII) and non-photochemical fluorescence quenching (NPQ)) in the non-inoculated leaf were recorded and compared with the spatial distribution of the virus detected by the fluorescence of GFP associated with the virus. We determined infection-related changes at different points of the light-induced chlorophyll fluorescence kinetics and at different days after inoculation. A slight change in the light-adapted steady-state values of ΦPSII and NPQ was observed in the infected area of the non-inoculated leaf. In contrast to the steady-state parameters, the dynamics of ΦPSII and NPQ caused by the dark–light transition in healthy and infected areas differed significantly starting from the second day after the detection of the virus in a non-inoculated leaf. The coefficients of correlation between chlorophyll fluorescence parameters and virus localization were 0.67 for ΦPSII and 0.76 for NPQ. In general, the results demonstrate the possibility of reliable pre-symptomatic detection of the spread of a viral infection using chlorophyll fluorescence imaging.
Funder
The Ministry of Science and Higher Education of the Russian Federation
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献