Nutrient Status of Cucumber Plants Affects Powdery Mildew (Podosphaera xanthii)

Author:

Elad YigalORCID,Barnea Dor,Rav-David Dalia,Yermiyahu UriORCID

Abstract

We examined the effects of applications of N, P, K, Mg, and Ca through an irrigation solution and spraying K, Ca, and Mg salts on cucumber powdery mildew (CPM, Podosphaera xanthii) in potted plants and under commercial-like conditions. Spraying CaCl2 and MgCl2, or KCl and K2SO4, decreased CPM. There were significant negative correlations between the anion-related molar concentrations of the salts and disease severity. Among the sprayed treatments, NaCl provided significantly less CPM control when applied at a low (0.05 M) concentration, as compared with CaCl2 and MgCl2. When sprayed applications of Mg and K salts were analyzed separately from the untreated control, the Cl− salts were found to be more effective than the SO4−2 salts. High N and Mg concentrations in the irrigation water delivered to young, fruit-less cucumber plants reduced CPM, whereas more CPM was observed when the irrigation solution contained a medium amount of P and a high amount of K. In contrast, mature, fruit-bearing plants had less severe CPM at higher N, lower P, and higher K levels. Spraying mature plants with monopotassium phosphate, polyhalite (K2Ca2Mg(SO4)4·2H2O), and the salts mentioned above over an entire growing season suppressed CPM. CPM severity was also reduced by spray applications of Ca, Mg, and KSO4−2 and Cl− salts. Spray applications provided better CPM control than fertigation treatments. Induced resistance is probably involved in the effects of nutrients on CPM.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3