Grazing Intensity Alters Leaf and Spike Photosynthesis, Transpiration, and Related Parameters of Three Grass Species on an Alpine Steppe in the Qilian Mountains

Author:

Li Jin,Hou Fujiang,Ren Jizhou

Abstract

The effect of grazing on leaf photosynthesis has been extensively studied. However, the influence of grazing on photosynthesis in other green tissues, especially spike, has remained poorly understood. This study investigated the impact of different grazing intensities (light grazing (LG), medium grazing (MG), and heavy grazing (HG)) on leaf and spike photosynthesis parameters and photosynthetic pigments of three grass species (Stipa purpurea, Achnatherum inebrians, and Leymus secalinus) on an alpine steppe in the Qilian Mountains. Grazing promoted leaf photosynthesis rate in S. purpurea and L. secalinus but reduced it in A. inebrians. Conversely, spike photosynthesis rate decreased in S. purpurea and L. secalinus under intense grazing, while there was no significant difference in spike photosynthesis rate in A. inebrians. The leaf and spike net photosynthetic rate (Pn) and transpiration rate (Tr) in S. purpurea were the greatest among the three species, while their organ temperatures were the lowest. On the other hand, grazing stimulated leaf chlorophyll biosynthesis in S. purpurea and L. secalinus but accelerated leaf chlorophyll degradation in A. inebrians. Furthermore, spike chlorophyll biosynthesis was inhibited in the three species under grazing, and only L. secalinus had the ability to recover from the impairment. Grazing had a positive effect on leaf photosynthesis parameters of S. purpurea and L. secalinus but a negative effect on those of A. inebrians. However, spike photosynthesis parameters were negatively influenced by grazing. Among the three species investigated, S. purpurea displayed the greatest ability for leaf and spike photosynthesis to withstand and acclimate to grazing stress. This study suggests that moderate grazing enhanced leaf photosynthetic capacity of S. purpurea and L. secalinus but reduced it in A. inebrians. However, spike photosynthetic capacity of three grass species decreased in response to grazing intensities.

Funder

Program for Changjiang Scholars and Innovative Research Team in University

Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3