Chemotypes and Their Stability in Mentha longifolia (L.) L.—A Comprehensive Study of Five Accessions

Author:

Patonay Katalin,Szalontai Helga,Radácsi Péter,Zámboriné-Németh ÉvaORCID

Abstract

Mentha longifolia (L.) L. is the most widespread wild-growing mint species found, and its chemical composition is extremely diverse. We studied the essential oil (EO) yield, composition, and chemotaxonomy of five, northern Hungarian accessions of the species in a cultivation experiment covering two vegetation years at two parallel sites. The long-term goal is to establish the cultivation of this stress-tolerant species in Hungary as a source of flavoring and preservative agents for commercial use. Essential oil yield (1–2 mL/100 g) was observed to be dependent on both the accession and the year. Accession HV1 is assumed to be a new, presumably rare chemotype containing carvacrol (19.28–20.56%), 1,8-cineole (14.87–17.45%), thymol (13.36–13.90%), carvacryl acetate (8.81–10.40%), and para-cymene (7.24–8.01%). Only minor fluctuations occurred in concentrations of these constituents due to habitats and years. A radical change in essential oil composition was observed in accession HV2, as one batch was based on thymol (19.79%) and 1,8-cineole (14.93%), while the others were rich in dihydrocarvone isomers (up to 69%). Although this needs further investigation, it does explain the coexistence of limonene-oxo and γ-terpinene pathways in horsemint. According to the literature, the pathway leading to thymol isomers and/or esters may be rare in the entire Mentha genus. We also demonstrated that known chemotypes of horsemint may differ in variability of their EO composition. Our results also led to the conclusion that any declaration on chemotype needs detailed examination and is not realistic on the basis of a single sample. Assumptions were made about the potential areas of utilization: beside fragrance and flavoring uses of essential oils free from pulegone and menthofurane, thymol-based ones may be used as antioxidative and anti-spoilage agents.

Funder

European Social Fund

Hungarian Ministry for Innovation and Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3