Extreme Precipitation and Flooding Contribute to Sudden Vegetation Dieback in a Coastal Salt Marsh

Author:

Stagg Camille LaFosse,Osland Michael J.,Moon Jena A.,Feher Laura C.,Laurenzano Claudia,Lane Tiffany C.,Jones William R.,Hartley Stephen B.

Abstract

Climate extremes are becoming more frequent with global climate change and have the potential to cause major ecological regime shifts. Along the northern Gulf of Mexico, a coastal wetland in Texas suffered sudden vegetation dieback following an extreme precipitation and flooding event associated with Hurricane Harvey in 2017. Historical salt marsh dieback events have been linked to climate extremes, such as extreme drought. However, to our knowledge, this is the first example of extreme precipitation and flooding leading to mass mortality of the salt marsh foundation species, Spartina alterniflora. Here, we investigated the relationships between baseline climate conditions, extreme climate conditions, and large-scale plant mortality to provide an indicator of ecosystem vulnerability to extreme precipitation events. We identified plant zonal boundaries along an elevation gradient with plant species tolerant of hypersaline conditions, including succulents and graminoids, at higher elevations, and flood-tolerant species, including S. alterniflora, at lower elevations. We quantified a flooding threshold for wetland collapse under baseline conditions characterized by incremental increases in flooding (i.e., sea level rise). We proposed that the sudden widespread dieback of S. alterniflora following Hurricane Harvey was the result of extreme precipitation and flooding that exceeded this threshold for S. alterniflora survival. Indeed, S. alterniflora dieback occurred at elevations above the wetland collapse threshold, illustrating a heightened vulnerability to flooding that could not be predicted from baseline climate conditions. Moreover, the spatial pattern of vegetation dieback indicated that underlying stressors may have also increased susceptibility to dieback in some S. alterniflora marshes.Collectively, our results highlight a new mechanism of sudden vegetation dieback in S. alterniflora marshes that is triggered by extreme precipitation and flooding. Furthermore, this work emphasizes the importance of considering interactions between multiple abiotic and biotic stressors that can lead to shifts in tolerance thresholds and incorporating climate extremes into climate vulnerability assessments to accurately characterize future climate threats.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference65 articles.

1. Framing and Context;Allen,2018

2. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate;Pörtner,2019

3. Climatology and Trends in Hourly Precipitation for the Southeast United States

4. Tropical cyclones and climate change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3